Jump to content

Carbfix Mineral Storage Atlas

The Mineral Storage Atlas serves as a quick exploration tool to map out potential sites to utilize the Carbfix technology, worldwide. It collates multiple geological datasets containing volcanic basalts, young oceanic ridges, large igneous provinces, mafic and ultramafic formations, and ophiolites. These formations contain the primary minerals that promote reactions with dissolved CO2, to form solid carbonates. These include both surface and underground formations.

Navigate the Carbfix Mineral Atlas. Zoom-in, click and explore your region of interest. Use the legend and information pop-outs to identify favorable geologic formations, industrial emitters and brainstorm the application of Carbfix worldwide.

Disclaimer: The Atlas serves as a first order indicator for the geological feasibility of the Carbfix technology. It does not consider other necessary factors such as permeability of the bedrock, or transportation distances from emission source to emission sinks. We caution against a “yes or no” interpretation of the feasibility based solely on the Mineral Storage Atlas.

Datasets used:

EU Emitters >10 000 tonCO2/year: European Commission. (2019). Verified Emissions for 2018. In https://ec.europa.eu/clima/sites/default/files/ets/registry/docs/verified_emissions_2018_en.xlsx. European Union.

WRI Global Power Plant Database v.1.3.0: Byers, L., Friedrich, J., Hennig, R., Kressig, A., Li, X., McCormick, C., & Malaguzzi Valeri, L. (2021). A Global Database of Power Plants. Retrieved from World Resources Institute website: https://www.wri.org/research/global-database-power-plants - WRI Global Power Plants selected are: Geothermal, Oil, Gas, Coal, Waste and Biomass.

WRI Aqueduct Water Risk Atlas Database v.3.0: Hofste, R. W., Kuzma, S., Walker, S., Sutanudjaja, E. H., Bierkens, M. F., Kuijper, M. J., ... & Reig, P. (2019). Aqueduct 3.0: Updated decision-relevant global water risk indicators. World Resources Institute: Washington, DC, USA. Retrieved from World Resources Institute website: https://www.wri.org/applications/aqueduct/water-risk-atlas.

Global Lithological Map (GLiM): Hartmann, J., & Moosdorf, N. (2012). The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochemistry, Geophysics, Geosystems, 13(12). https://doi.org/10.1029/2012gc004370.

Ophiolites: Mann, P., & Taira, A. (2004). Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics, 389(3-4), 137–190. https://doi.org/10.1016/j.tecto.2003.10.024

Oceanic crust: Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., … Gurnis, M. (2019). A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic. Tectonics, 38(6), 1884–1907. https://doi.org/10.1029/2018tc005462

Large Igneous Provinces (LIPs): Johansson, L., Zahirovic, S., & Müller, R. D. (2018). The Interplay Between the Eruption and Weathering of Large Igneous Provinces and the Deep‐Time Carbon Cycle. Geophysical Research Letters, 45(11), 5380–5389. https://doi.org/10.1029/2017gl076691

US Mafic & Ultramafic Rocks: Blondes, M. S., Merrill, M. D., Anderson, S. T., & DeVera, C. A. (2019). Carbon dioxide mineralization feasibility in the United States. Scientific Investigations Report. https://doi.org/10.3133/sir20185079

EU Mafic Rocks: Asch, K. (2003). 1: 5 000 000 International Geological Map of Europe and Adjacent Areas: Development and Implementation of a GIS-enabled Concept. In Geologisches Jahrbuch, SA 3. Stuttgart: BGR.E. Schweizerbartsche Verlagsbuchhandlung.